Roll No. Total Printed Pages - 10

F-762

M.A./M.Sc. (THIRD SEMESTER) EXAMINATION, Dec. - Jan., 2021-22 MATHEMATICS (PAPER FIRST)

(Integration Theory and Functional Analysis - I)

Time : Three Hours] [Maximum Marks : 80

[Minimum Pass Marks: 16

Note: Attempt all sections as directed.

Section - A

(1 mark each)

(Objective /Multiple Choice Questions)

Note: Attempt all questions: Choose the correct answer:

1. A union of any countable collection of positive subset of X is

- (A) Positive
- (B) Negative
- (C) Both positive and Negative
- (D) None of the above

- [2]
- 2. Two signed measure μ and γ for which both $\gamma<<\mu$ and $\mu<<\gamma$ are called
 - (A) Singular
 - (B) Absolute continuous
 - (C) Equivalent
 - (D) None of the above
- 3. If μ is a signed measure and f is a measurable function such that f is integrable with respect to $|\mu|$ then

(A)
$$\int f d\mu = \int f d\mu^+ + \int f d\mu^-$$

(B)
$$\int f d\mu = \int f d\mu^+ - \int f d\mu^-$$

(C)
$$\int f d\mu \neq \int f d\mu^{+} - \int f d\mu^{-}$$

- (D) None of the above
- 4. The collection A* of all μ * measurable set is σ algebra containing A & *if* < E_a > is a disjoint sequence in A* then.

(A)
$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) > \sum_{n=1}^{\infty} \mu^* (E_n)$$

(B)
$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) < \sum_{n=1}^{\infty} \mu^* (E_n)$$

(C)
$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) = \sum_{n=1}^{\infty} \mu^* (E_n)$$

(D)
$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) \neq \sum_{n=1}^{\infty} \mu^* (E_n)$$

- 5. An absolutely continuous function is _____ almost every where.
 - (A) Continuous
 - (B) Differentiable
 - (C) Increasing
 - (D) None of the above
- 6. If a function f is absolutely continuous in an open interval (a, b) and if f'(x) = 0 almost every where in [a, b] then f is.
 - (a) A finite value
 - (B) Constant
 - (C) Both (A) and (B)
 - (D) None of these
- 7. If the derivative of two absolutely continuous function are equivalent then the
 - (A) Function differ by a constant
 - (B) Function differ by a variable
 - (C) Function is not constant
 - (D) None of these
- 8. If X is the characteristic function of E of $X \times Y$ then X_x and x^y are the characteristic function of a rectangle $A \times B$ then.

P.T.O.

- (A) $X^{(x,y)} = X_A(x) + X_B(y)$
- (B) $X^{(x,y)} = X_A(x) X_B(y)$
- (C) $X^{(x,y)} = X_A(x).X_B(y)$
- (D) None of these

- 9. Every compact Baire set is
 - (A) G_{s}
 - (B) F_{σ}
 - (C) Both (A) and (B)
 - (D) None of these
- 10. If X is any topological space, the smallest σ -algebra containing the closed set is called
 - (A) Baire set
 - (B) Borel set
 - (C) Locally compact
 - (D) None of these
- 11. A finite disjoint union of inner regular set of finite measure is-
 - (A) Outer Regular
 - (B) Regular
 - (C) Inner Regular
 - (D) None of these
- 12. Let μ be a Baire measure such that the measure of every non-empty Baire open set is positive and if $f \in J_+$ then a necessary and sufficient condition that $\int f \, d\, \mu = 0$ is that
 - (A) $f(x) = 0 \ \forall x \in X$
 - (B) $f(x) > 0 \ \forall x \in X$
 - (C) $f(x) < 0 \ \forall x \in X$
 - (D) $f(x) \neq 0 \ \forall x \in X$

F-762

F-762

13. Every complete subspace of a normed linear space is	13.	Every	compl	ete subs	space of	fa	normed	linear	space	is
---	-----	-------	-------	----------	----------	----	--------	--------	-------	----

- (A) Open
- (B) Closed
- (C) Both open and closed
- (D) None of these

14. A normed linear space *X* is complete if and only if every absolutely convergent series in *X* is.

- (A) Complete
- (B) Sequentially complete
- (C) Convergent
- (D) None of these
- 15. Two normed linear space X and Y are said to _____ if and only if they are isometrically isomorphic
 - (A) Isomorphic
 - (B) Homeomorphic
 - (C) Finite
 - (D) Equivalent

16. Any finite dimensional normed linear space is.

- (A) Banach space
- (B) Linear space
- (C) Metric space
- (D) None of these

17. Let $1 < P < \infty$ and $\frac{1}{P} + \frac{1}{q} = 1$ then.

- (A) dual of ℓ_p is ℓ_q^*
- (B) dual of ℓ_p is ℓ_q
- (C) dual of ℓ_p is ℓ_∞
- (D) None of these
- 18. Let *X* and *Y* be normed linear space and *T a* linear transformation on *X* into *Y* then *T* is continuous if and only if there is a constant M such that
 - (A) $||Tx|| = M ||x|| \forall x \in X$
 - (B) $||Tx|| \ge M ||x|| \quad \forall x \in X$
 - (C) $||Tx|| \leq M ||x|| \forall x \in X$
 - (D) None of these
- 19. If X and Y and normed linear space and T is a linear operator on X into Y then T is continuous if and only if T is
 - (A) Uniformly continuous
 - (B) Bounded
 - (C) Continuous at one point
 - (D) None of these

20. Let $\{x_n\}$ be a weakly convergent sequence in a normed space X i.e. $x_n \xrightarrow{w} x$ then.

Statement I: Every subsequence of $\{x_n\}$ converges weakly to x.

Statement II : The sequence $||x_n||$ is bounded.

- (A) Statement I is true and statement II is false
- (B) Statement I is false and statement II is true
- (C) Both statements I and II are true
- (D) Both statements I and II are false

Section - B

(1½ marks each)

(Very short answer type questions)

Note - Attempt all questions.

- 1. Define totally finite signed measure.
- 2. Define Radon Nikodym theorem.
- 3. Define locally bounded variation.
- 4. Define absolutely continuous function.
- 5. Define Regular measure.
- 6. Define locally compact space.
- 7. Give an example of normed linear space.
- 8. State Riesz Lemma.
- 9. Define weak and strong convergence.
- 10. Define bounded linear functional.

Section - C

(2½ marks each)

Note - Attempt all questions.

- 1. Let E and F be measurable set and μ is a signed measure such that $E \subset F$ and $|\mu(F)| < \infty$ then $|\mu(E)| < \infty$.
- 2. Let μ and γ are signed measure then the conditions.
 - (i) $\gamma \ll \mu$
 - (ii) $\gamma^+ << \mu$ and $\gamma^- << \mu$
 - (iii) $|\gamma| \ll |\mu|$

are mutually equivalent.

- 3. Prove that an integral function is a continuous function.
- 4. Let $\{(Ai \times Bi)\}$ be a countable disjoint collection of measurable rectangle whose union is a measurable rectangle $A \times B$ then

$$\lambda(A \times B) = \sum_{i} \lambda(A_i \times B_i)$$

- 5. Every Borel set is σ-bounded if and only if every σ-bounded open set is a Borel set.
- 6. Prove that a finite disjoint union of inner regular set of finite measure is inner regular.
- 7. In a normed linear space prove that every convergent sequence is a Cauchy sequence.
- 8. State and prove Riesz Lemma.

F-762

F-762

P.T.O.

[10]

9. Prove that in a finite dimensional normed linear space strong and weak convergence coincide.

- 10. Let X and Y be normed linear space and T : X → Y a linear transformation. Then the following three conditions are equivalent.
 - (i) T is bounded
 - (ii) T is continuous
 - (iii) T is continuous at one point

Section - D

(4 marks each)

(Long answer type questions)

Note - Attempt all questions.

1. Let E be a measurable set of finite measure is $0<\mu(E)<\infty$ then E contains a positive set A with $\mu(A)>0$

OR

State and prove Random Nikodym theorem.

2. State and prove Fubini's theorem

OR

Prove that if a function f is absolutely continuous in an open interval (a, b) and if f'(x) = 0 almost every where in [a, b] then f is constant.

3. Prove that every compact Baire set is G_s .

OR

A necessary and sufficient condition that every set in \hat{C} be outer regular is that every bounded set in \hat{U} be inner regular.

4. Prove that a normed linear space X is complete if and only if every absolutely convergent series in X is convergent

OR

Let X be a normed linear space. The closed unit ball $B = \{x \in X: ||x|| < 1\}$ in X is compact if and only if X is finite dimensional.

5. Let X and Y be normed linear space. Then B (X, Y) the set of all bounded linear transformation from X into Y is a normed linear space. More over if Y is a Banach space then B(X, Y) is also a Banach space.